Question	Answer	Mark
Number		
1(a)	Describe terms	
	tough – able to absorb energy without failure (accept breaking/cracking etc) /	
	able to absorb a lot of energy in the plastic region /	
	withstand impact forces/shocks (1)	
	brittle – tends to shatter when subject to impact /	
	fails with little or no plastic deformation/behaviour/just beyond elastic limit (1)	(2)
1(b)	State type of behaviour	
	Plastic (deformation) (1)	(1)
	Total for question	3

Question Number	Answer	Mark
2 (a)	Show that this gives ultimate tensile strength of about 6×10^7 Pa	
	Use of $W = mg$ (1) (do not award this mark if $g = 10$ N/kg)	
	Use of stress = force / area (1)	
	Correct answer $[6.3 \times 10^7 (Pa)$ to at least 2 sf] (1) [no ue]	
	(if F/A = 84/1.3 x 10^{-5} m ² or they write 84 N/1.3 x 10^{-5} m ² allow second mark only)	
	Example of calculation	
	W = mg	
	= 84 kg x 9.81 N/kg = 824 N	
	stress = force/area	
	$= 824 \text{ N}/1.3 \text{ x } 10^{-5} \text{ m}^2$	
	$= 6.3 \times 10^7 \text{ Pa}$	(3)
	(N.B. 'reverse show that', i.e. using 6×10^7 Pa to get 79.5 kg gets 2 marks	
	max)	
2 (b)	Explain why the value for the sample may be lower	
	Explains	
	Masses added in 2 kilograms (1)	
	Required mass may have been between 82 and 84 kg / required mass may	
	have been less than 84 kg / may need less than 2 kg extra (1)	(2)
2 (c)	Explain why the wood sample has the shape shown	
- (-)		
	Any of the following to a maximum of 2:	
	Maximum stress in the centre (1)	
	So it breaks in the right place (1)	
	(Wide at ends) for firm grip by supports (1) Narrow in centre because breaking force proportional to area (1)	
	For a given force you get a larger stress (1)	
	So a smaller force/mass/weight is required to break it (1)	(Max 2)
2 (d)	What should be done to ensure reliable results	
	Repeat and average / repeat and identify anomalies / repeat to check (1)	(1)
	Total for question	8

Question Number	Answer	Mark
3 (a)	Explain whether the band obeys Hooke's law.	
	States: Line not straight / line curves / gradient not constant / k not constant (1) (But) Hooke's law states extension or change in length is proportional to force (1)	(2)
	[Allow both marks for: No, because extension is not proportional to force]	
3(b)	[Accept coherent references to 'the variables' for force and extension] Show that energy stored is below 0.8 J	
	Indication of use of area (could be marks on graph) / use of $\frac{1}{2} Fx$ (1) Calculation of value as good as triangle approximation (0.6 J) (1) More detailed, e.g. counting squares, for correct answer (0.76 J) (1) (accept answers above from 0.7 J to just below 0.8 J)	(3)
	[If a candidate shows it is less than 0.8 J by drawing a shape with area of 0.8 J, 1 st mark as above, 2 nd mark for correct 0.8 J shape, 3 rd for making comparison.]	
3(c)	Calculate of initial speed of aeroplane	
	Equates stored energy with initial kinetic energy of aeroplane (1) Use of ke = $1/2 mv^2$ (1) Correct answer (7.5 m s ⁻¹) (1)	(2)
	Correct answer (7.5 m s ⁻) (1)	(3)
	Example of calculation $0.76 \text{ J} = 1/2 \text{ mv}^2$ $v = \sqrt{(2 \times 0.76 \text{ J} / 0.027 \text{ kg})}$ $= 7.5 \text{ m s}^{-1}$	
	[Allow use of 0.8 J for energy instead of ecf from 19 (b), or allow an obvious 'less than 0.8 J' if a candidate hasn't got their own value and is attempting to continue, but it must not be less than 0.6 J] [Use of 0.6 J gives 6.7 m s ⁻¹ ; use of 0.8 J gives 7.7 m s ⁻¹]	
3(d) (i)	Describe energy transfers	
	energy transferred to (elastic) strain energy / elastic potential energy of band (and some heat) (1) (elastic) strain energy / elastic potential energy / this energy decreases and some energy transferred to heat (1)	
	[Ignore references to sound]	(2)
PhysicsA	ndMathsTutor.com	

3 (d) (ii)	Explain effect on initial speed (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate to be eligible for the 3 rd Physics mark) Area under graph for increasing force > area for decreasing force / one line higher than the other / gap between lines (1) Work done by band less than calculated energy stored / energy stored > energy retrieved / area between lines is energy transferred to heat/ area between lines is energy dissipated (1)	(3)
	not all energy is transferred to kinetic energy (1)	13
	Total for question	13

Question	Answer	Mark
Number		
4 (a)	Explain what is meant by each of the following terms	
	limit of proportionality - stress proportional to strain / obeys Hooke's law / Force proportional to extension up to this point (1) tensile strength - greatest <u>stress</u> before fracturing (1) yield point - point at which plastic deformation begins / point at which material shows a larger increase in strain for a smaller increase	
	in stress (1)	3
4 (b)	Mark 'limit of proportionality' and the 'yield point' on the graph.	
	L shown at end of linear part (1)	
	Y shown beyond L and up to maximum stress (1)	2
	Total for question	5

Question Number	Answer	Mark
5(a)	Force diagram	
	Accept free body or triangle/parallelogram of forces	
	Downward arrow labelled Weight/ <i>W/mg</i> (1) Arrows parallel to both lines, at least one labelled tension/ <i>T</i> (1) Minus 1 for each additional force	2
5(b) (i)	Show that downward vertical force is about 11 N	
	Correct answer (10.8 N) (1) [no ue]	1
	Example of calculation	
	W = mg = 1.1 kg x 9.81 N kg ⁻¹ = 10.8 N	
5(b)(ii)	Show that the angle is about 84°.	
	Correct use of sides in right angled triangle (1) Correct answer [84.2°] (1) [no ue]	2
	Example of calculation	
	tan θ = 4.80 m / 0.485 m Angle = 84.2°	
	(Accept use of cos instead of tan)	

5(b) (iii)	Show that the tension on the line is less than 60 NUse of trigonometrical function for vertical component of tension (1)Correct answer [53 N] (1) [allow ecf] [no ue]Example of calculation $T_v = T \cos \theta$ $W = 2 T \cos \theta$ $T = 10.8 \text{ N} / 2 \text{ x} \cos 84.2$	2
	= 53.4 N Alternative answers range from 51 N to 55 N	
5(b) (iv)	Calculate the strain	
	Calculate extension (1)	
	correct answer $[2.6 \times 10^{-2}]$ (1)	
	Example of calculation	
	extension = 9.847 m – 9.6 m = 0.247 m strain = 0.247 m / 9.6 m	2
	$= 2.6 \times 10^{-2} [2.6\%]$	
5 (c)	Calculate Young's modulus	
	Use of stress = force / area (1) Use of E = stress / strain (1)	3
	Correct answer [3.1 x 10^8 Pa] [3.1 x 10^8 N m ⁻²] (1) [allow ecf, including use of $F = 60$ N]	
	[Substituting into $E = (F/A)/(e/I)$ in one go gets both use of marks]	
	E = (F/A)/(e/l) = (53.4 N / 6.6 x 10 ⁻⁶ m ²) / 2.6 x 10 ⁻²	
	= 3.1×10^8 Pa (accept answers in range 3.0×10^8 Pa to 3.6×10^8 Pa for alternative <i>F</i> values)	
	Total for question	12

Question	Answer		Mark
Number			
6(a)	Use of $W = mg$	(1)	
	Use of $F = (-) kx$	(1)	
	$k = 123 \text{ (N m}^{-1})$	(1)	3
	(use of $g = 10 \text{ N kg}^{-1} \rightarrow 125 \text{ (N m}^{-1}\text{) scores 2 marks}$)		
	Example of calculation		
	$W = 0.1 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.981 \text{ N}$		
	$(-) 0.981 \text{ N} = (-) k \times 0.008 \text{ m}$		
	$k = 122.6 \text{ N m}^{-1}$		
6(b)	(If the load is too high) the <u>elastic limit</u> (of the spring) will be exceeded		
	Or the maximum load is at the <u>elastic limit</u>	(1)	
	(accept 1.2 kg/12 N for maximum load)		
	The spring will not return to its original length/position		
	Or the spring will be permanently deformed	(1)	
	The idea that the calibrations of the scale will not be correct e.g. the calibration/scale is now incorrect/inaccurate Or the spring		
	constant will change	(1)	3
	(Accept converse argument for keeping the load below the maximum load)		
	Total for question		6

Question Number	Answer	Mark
7(a)	Add labelled arrows to show the other forces on the submarine.	
	Label with weight and viscous drags 2 correct (2), 1 or 2 correct	
	Label upthrust, weight and viscous drag: 3 correct (2), 1 or 2 correct (1)	2
	(Accept unambiguous single letter labels, e.g. U, W and V/F/D/VD)	
	(Accept <i>mg</i> for weight but do not accept 'gravity')	
7 (b)	State two equations to show the relationship between the forces	
	Upthrust = (-)Weight (1)	
	Thrust = (-)Viscous drag (1)	2
7 (c)	Show that the submarine has a weight of about 7 x 10 ⁷ N.	
	Use of density = $m/V(1)$ Correct answer [7.2 x 10 ⁷ N to at least 2 s.f.] (1) [no ue]	2
		2
	Example of calculation	
	calculate weight of water as U = W	
	m = density x volume	
	$= 1030 \text{ kg m}^{-3} \text{ x } 7 \ 100 \text{ m}^{3}$	
	$= 7.3 \times 10^6 \text{ kg}$	
	W = mg	
	$W = 7.3 \times 10^6 \text{ kg} \times 9.81 \text{ N kg}^{-1}$	
	$= 7.2 \times 10^7 \text{ N}$	
7(d) (i)	Explain what is meant by compressive strain.	
	decrease in length / original length (1)	1
7(d)	Explain the action that should be taken	
(ii)	pump out water / replace water in tanks with air (1)	
	to decrease weight (accept mass) / to compensate for decreased	
7(1)	upthrust / to make density the same as water (1)	2
7(d) (iii)	Suggest why a material like fibreglass would be unsuitable QWC - Work must be clear and organised in a logical manner using	
····/	technical wording where appropriate	
	A much greater (compressive) strain will be produced / compresses	
	more easily (1)	
	producing a larger decrease in volume/upthrust/deformation (1)	2
	Total for question	11